
Introducing myself
The ε language

Conclusion

GNU epsilon
an extensible programming language

Luca Saiu <positron@gnu.org>

GNU Hackers Meeting 2011
IRILL, Paris, France

.
2011-08-27

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

(This is gonna be radical and controversial)

An unofficial common theme of this meeting: static checking
Sylvestre
Basile & Pierre
Jim Blandy
Reuben (he adovaces make syntax-check)
Andy
...

.

.
It’s an extremely popular theme here in France...
.
...You’ll get my opinion later.

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Who I am and what I do
Ten years in one frame: ε

Hello, I’m Luca Saiu

Attaché Temporaire d’Enseignement et Recherche at LIPN,
Université Paris 13, France.
.
I work on programming languages and compilers; my PhD thesis is
about the formal specification and implementation of epsilon.
.

Free software activist
GNU maintainer since 2002
Fought against software patents
Pestering everybody about free software

Lisper and functional programmer
Co-wrote Marionnet (in ML)

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Who I am and what I do
Ten years in one frame: ε

Functional programming in practice: I co-wrote Marionnet

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Who I am and what I do
Ten years in one frame: ε

Quick history of ε

2001: a toy, my first functional language implementation and
second compiler; static type checking; reference counter; no
I/O; custom virtual machine; all written in C
2002-2005: rewritten from scratch; ML-style; static type
inference; my first two garbage collectors; epsilonlex and
epsilonyacc (bootstrapped); purely functional with I/O
monad; new custom virtual machine; all written in C;
∼ 40, 000 LoC; approved as official GNU project in 2002
2006-2007: macros; user-defiend primitives; incomplete
2007-2009: reductionism: kernel based on λ-calculus; macros;
user-defiend primitives; incomplete
2010-: reductionism: imperative first-order kernel macros and
transformations; user-defiend primitives; s-expression syntax;
advanced OCaml prototype, about to be bootstrapped

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Mainstream language aren’t sufficient
Reductionism
A closer look at ε

Language research

– yes, I’d like some more please

A crude chronology of common programming language features
1960s: structured programming, recursion, symbolic
programming, higher order, garbage collection,
meta-programming, object orientation, concatenative
programming
1970s:

first-class continuations, quasiquoting, type inference

1980s:

logic programming, purely functional programming

1990s:

monads in programming; err... components?

2000s:

err...
No, we didn’t solve the expressivity problem. Whoever thinks we
did is particularly far from the solution.

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Mainstream language aren’t sufficient
Reductionism
A closer look at ε

Language research

– yes, I’d like some more please

A crude chronology of common programming language features
1960s: structured programming, recursion, symbolic
programming, higher order, garbage collection,
meta-programming, object orientation, concatenative
programming
1970s: first-class continuations, quasiquoting, type inference
1980s:

logic programming, purely functional programming

1990s:

monads in programming; err... components?

2000s:

err...
No, we didn’t solve the expressivity problem. Whoever thinks we
did is particularly far from the solution.

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Mainstream language aren’t sufficient
Reductionism
A closer look at ε

Language research

– yes, I’d like some more please

A crude chronology of common programming language features
1960s: structured programming, recursion, symbolic
programming, higher order, garbage collection,
meta-programming, object orientation, concatenative
programming
1970s: first-class continuations, quasiquoting, type inference
1980s: logic programming, purely functional programming
1990s:

monads in programming; err... components?

2000s:

err...
No, we didn’t solve the expressivity problem. Whoever thinks we
did is particularly far from the solution.

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Mainstream language aren’t sufficient
Reductionism
A closer look at ε

Language research

– yes, I’d like some more please

A crude chronology of common programming language features
1960s: structured programming, recursion, symbolic
programming, higher order, garbage collection,
meta-programming, object orientation, concatenative
programming
1970s: first-class continuations, quasiquoting, type inference
1980s: logic programming, purely functional programming
1990s: monads in programming; err... components?
2000s:

err...
No, we didn’t solve the expressivity problem. Whoever thinks we
did is particularly far from the solution.

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Mainstream language aren’t sufficient
Reductionism
A closer look at ε

Language research

– yes, I’d like some more please

A crude chronology of common programming language features
1960s: structured programming, recursion, symbolic
programming, higher order, garbage collection,
meta-programming, object orientation, concatenative
programming
1970s: first-class continuations, quasiquoting, type inference
1980s: logic programming, purely functional programming
1990s: monads in programming; err... components?
2000s: err...

No, we didn’t solve the expressivity problem. Whoever thinks we
did is particularly far from the solution.

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Mainstream language aren’t sufficient
Reductionism
A closer look at ε

Language research – yes, I’d like some more please

A crude chronology of common programming language features
1960s: structured programming, recursion, symbolic
programming, higher order, garbage collection,
meta-programming, object orientation, concatenative
programming
1970s: first-class continuations, quasiquoting, type inference
1980s: logic programming, purely functional programming
1990s: monads in programming; err... components?
2000s: err...

No, we didn’t solve the expressivity problem. Whoever thinks we
did is particularly far from the solution.

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Mainstream language aren’t sufficient
Reductionism
A closer look at ε

Language research – yes, I’d like some more please

A crude chronology of common programming language features
1960s: structured programming, recursion, symbolic
programming, higher order, garbage collection,
meta-programming, object orientation, concatenative
programming
1970s: first-class continuations, quasiquoting, type inference
1980s: logic programming, purely functional programming
1990s: monads in programming; err... components?
2000s: err...

No, we didn’t solve the expressivity problem. Whoever thinks we
did is particularly far from the solution.

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Mainstream language aren’t sufficient
Reductionism
A closer look at ε

“Modern” languages aren’t expressive enough

Program requirements get more and more complex
Programs grow, too: ∼ 106 LoC is not unusual
But languages stopped evolving

Programs are hard to get right
Sometimes we do need to prove properties about programs (by
machine, for realistic programs)...

...so we need a formal specification (necessary but not
sufficient)

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Mainstream language aren’t sufficient
Reductionism
A closer look at ε

“Modern” languages are way too complex for proofs

The Definition of Standard ML, Revised Edition, 1997,
128 pp. (very dense formal specification)
Revised6 Report on the Algorithmic Language Scheme, 2007
187 pp. (with a non-normative and partial formal
specification in an appendix)
Haskell 98 Language and Libraries – The Revised Report,
2003, 270 pp. (no formal specification)
ISO/IEC 9899:201x Programming languages – C, March 2009
draft, 564 pp. (no formal specification)
The Java Language Specification, Third Edition, June 2009,
684 pp. (no formal specification)
ANSI INCITS 226-1994 (R2004) Common Lisp, 1153 pp. (no
formal specification)
N3291: C++0x, last public draft before ratification, April
2011, 1344 pp. (no formal specification)

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Mainstream language aren’t sufficient
Reductionism
A closer look at ε

The silver bullet, in my opinion

: reductionism

What killer features do we need?

Of course I’ve got opinions, but in general I don’t know
So, delay decisions and let users build the langauge

Small kernel language
Syntactic abstraction
Formal specification

We need radical experimentation again!
Many personalities on top of the same kernel

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Mainstream language aren’t sufficient
Reductionism
A closer look at ε

The silver bullet, in my opinion

: reductionism

What killer features do we need?
Of course I’ve got opinions, but in general I don’t know

So, delay decisions and let users build the langauge
Small kernel language
Syntactic abstraction
Formal specification

We need radical experimentation again!
Many personalities on top of the same kernel

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Mainstream language aren’t sufficient
Reductionism
A closer look at ε

The silver bullet, in my opinion: reductionism

What killer features do we need?
Of course I’ve got opinions, but in general I don’t know
So, delay decisions and let users build the langauge

Small kernel language
Syntactic abstraction
Formal specification

We need radical experimentation again!
Many personalities on top of the same kernel

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Mainstream language aren’t sufficient
Reductionism
A closer look at ε

The silver bullet, in my opinion: reductionism

What killer features do we need?
Of course I’ve got opinions, but in general I don’t know
So, delay decisions and let users build the langauge

Small kernel language
Syntactic abstraction
Formal specification

We need radical experimentation again!
Many personalities on top of the same kernel

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Mainstream language aren’t sufficient
Reductionism
A closer look at ε

The silver bullet, in my opinion: reductionism

What killer features do we need?
Of course I’ve got opinions, but in general I don’t know
So, delay decisions and let users build the langauge

Small kernel language
Syntactic abstraction
Formal specification

We need radical experimentation again!
Many personalities on top of the same kernel

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Mainstream language aren’t sufficient
Reductionism
A closer look at ε

The power of syntactic abstraction: a Scheme demo

Have a look at an expressive language (it’s not ε) .

.

Please raise your hand if you know some Lisp dialect .

.

.

[Quick Scheme demo: McCarthy’s amb operator, macros and
call/cc]

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Mainstream language aren’t sufficient
Reductionism
A closer look at ε

Problems I see with Scheme

High level kernel
Very hard to compile efficiently and analyze...
...you pay for the complexity of call/cc even when you don’t
use it

performance, in some implementations
intellectual complexity

Still relatively complex
Last standard (R6RS, 2007): 187 pages in English
Too big to have a complete formal specification

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Mainstream language aren’t sufficient
Reductionism
A closer look at ε

What I call reductionism is not new. Can you recognize this?

“a language design of the old school is a pattern for programs. But
now we need to ‘go meta.’ We should now think of a language
design as a pattern for language designs, a tool for making more
tools of the same kind. [...] My point is that a good programmer in
these times does not just write programs. A good programmer
builds a working vocabulary. In other words, a good programmer
does language design, though not from scratch, but by building on
the frame of a base language.” .

(my emphasis) .

—Guy L. Steele Jr., Growing a Language, 1998

What kernel language did he plan to build on? Java (!)
To Steele’s credit, his later proposals based on Fortress are more
realistic

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Mainstream language aren’t sufficient
Reductionism
A closer look at ε

What I call reductionism is not new. Can you recognize this?

“a language design of the old school is a pattern for programs. But
now we need to ‘go meta.’ We should now think of a language
design as a pattern for language designs, a tool for making more
tools of the same kind. [...] My point is that a good programmer in
these times does not just write programs. A good programmer
builds a working vocabulary. In other words, a good programmer
does language design, though not from scratch, but by building on
the frame of a base language.” .

(my emphasis) .

—Guy L. Steele Jr., Growing a Language, 1998

What kernel language did he plan to build on? Java (!)
To Steele’s credit, his later proposals based on Fortress are more
realistic

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Mainstream language aren’t sufficient
Reductionism
A closer look at ε

What I call reductionism is not new. Can you recognize this?

“a language design of the old school is a pattern for programs. But
now we need to ‘go meta.’ We should now think of a language
design as a pattern for language designs, a tool for making more
tools of the same kind. [...] My point is that a good programmer in
these times does not just write programs. A good programmer
builds a working vocabulary. In other words, a good programmer
does language design, though not from scratch, but by building on
the frame of a base language.” .

(my emphasis) .

—Guy L. Steele Jr., Growing a Language, 1998

What kernel language did he plan to build on?

Java (!)
To Steele’s credit, his later proposals based on Fortress are more
realistic

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Mainstream language aren’t sufficient
Reductionism
A closer look at ε

What I call reductionism is not new. Can you recognize this?

“a language design of the old school is a pattern for programs. But
now we need to ‘go meta.’ We should now think of a language
design as a pattern for language designs, a tool for making more
tools of the same kind. [...] My point is that a good programmer in
these times does not just write programs. A good programmer
builds a working vocabulary. In other words, a good programmer
does language design, though not from scratch, but by building on
the frame of a base language.” .

(my emphasis) .

—Guy L. Steele Jr., Growing a Language, 1998

What kernel language did he plan to build on? Java (!)

To Steele’s credit, his later proposals based on Fortress are more
realistic

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Mainstream language aren’t sufficient
Reductionism
A closer look at ε

What I call reductionism is not new. Can you recognize this?

“a language design of the old school is a pattern for programs. But
now we need to ‘go meta.’ We should now think of a language
design as a pattern for language designs, a tool for making more
tools of the same kind. [...] My point is that a good programmer in
these times does not just write programs. A good programmer
builds a working vocabulary. In other words, a good programmer
does language design, though not from scratch, but by building on
the frame of a base language.” .

(my emphasis) .

—Guy L. Steele Jr., Growing a Language, 1998

What kernel language did he plan to build on? Java (!)
To Steele’s credit, his later proposals based on Fortress are more
realistic

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Mainstream language aren’t sufficient
Reductionism
A closer look at ε

Reflection

The program has to be able to reason about itself (*)

Good error reporting: failed within the else branch of the
conditional starting at line 35
Analyses on the program state

unexec
Checkpointing
Compiling [the compiler is just a procedure!]

The program has to be able to update itself (**)
Transformations à-la-CPS
Compiler optimizations [my idea: nondeterministic rewrite system, hill-climbing]

Compile-time garbage collection
Point (**) is much more delicate

Use syntax abstraction to rewrite into non-reflective programs
where possible...

...otherwise inefficient and unanalyzable (but not an “error”)

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Mainstream language aren’t sufficient
Reductionism
A closer look at ε

Reflection

The program has to be able to reason about itself (*)
Good error reporting: failed within the else branch of the
conditional starting at line 35

Analyses on the program state
unexec
Checkpointing
Compiling [the compiler is just a procedure!]

The program has to be able to update itself (**)
Transformations à-la-CPS
Compiler optimizations [my idea: nondeterministic rewrite system, hill-climbing]

Compile-time garbage collection
Point (**) is much more delicate

Use syntax abstraction to rewrite into non-reflective programs
where possible...

...otherwise inefficient and unanalyzable (but not an “error”)

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Mainstream language aren’t sufficient
Reductionism
A closer look at ε

Reflection

The program has to be able to reason about itself (*)
Good error reporting: failed within the else branch of the
conditional starting at line 35
Analyses on the program state

unexec
Checkpointing
Compiling [the compiler is just a procedure!]

The program has to be able to update itself (**)
Transformations à-la-CPS
Compiler optimizations [my idea: nondeterministic rewrite system, hill-climbing]

Compile-time garbage collection
Point (**) is much more delicate

Use syntax abstraction to rewrite into non-reflective programs
where possible...

...otherwise inefficient and unanalyzable (but not an “error”)

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Mainstream language aren’t sufficient
Reductionism
A closer look at ε

Reflection

The program has to be able to reason about itself (*)
Good error reporting: failed within the else branch of the
conditional starting at line 35
Analyses on the program state

unexec
Checkpointing
Compiling [the compiler is just a procedure!]

The program has to be able to update itself (**)

Transformations à-la-CPS
Compiler optimizations [my idea: nondeterministic rewrite system, hill-climbing]

Compile-time garbage collection
Point (**) is much more delicate

Use syntax abstraction to rewrite into non-reflective programs
where possible...

...otherwise inefficient and unanalyzable (but not an “error”)

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Mainstream language aren’t sufficient
Reductionism
A closer look at ε

Reflection

The program has to be able to reason about itself (*)
Good error reporting: failed within the else branch of the
conditional starting at line 35
Analyses on the program state

unexec
Checkpointing
Compiling [the compiler is just a procedure!]

The program has to be able to update itself (**)
Transformations à-la-CPS

Compiler optimizations [my idea: nondeterministic rewrite system, hill-climbing]

Compile-time garbage collection
Point (**) is much more delicate

Use syntax abstraction to rewrite into non-reflective programs
where possible...

...otherwise inefficient and unanalyzable (but not an “error”)

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Mainstream language aren’t sufficient
Reductionism
A closer look at ε

Reflection

The program has to be able to reason about itself (*)
Good error reporting: failed within the else branch of the
conditional starting at line 35
Analyses on the program state

unexec
Checkpointing
Compiling [the compiler is just a procedure!]

The program has to be able to update itself (**)
Transformations à-la-CPS
Compiler optimizations [my idea: nondeterministic rewrite system, hill-climbing]

Compile-time garbage collection
Point (**) is much more delicate

Use syntax abstraction to rewrite into non-reflective programs
where possible...

...otherwise inefficient and unanalyzable (but not an “error”)

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Mainstream language aren’t sufficient
Reductionism
A closer look at ε

Reflection

The program has to be able to reason about itself (*)
Good error reporting: failed within the else branch of the
conditional starting at line 35
Analyses on the program state

unexec
Checkpointing
Compiling [the compiler is just a procedure!]

The program has to be able to update itself (**)
Transformations à-la-CPS
Compiler optimizations [my idea: nondeterministic rewrite system, hill-climbing]

Compile-time garbage collection

Point (**) is much more delicate
Use syntax abstraction to rewrite into non-reflective programs
where possible...

...otherwise inefficient and unanalyzable (but not an “error”)

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Mainstream language aren’t sufficient
Reductionism
A closer look at ε

Reflection

The program has to be able to reason about itself (*)
Good error reporting: failed within the else branch of the
conditional starting at line 35
Analyses on the program state

unexec
Checkpointing
Compiling [the compiler is just a procedure!]

The program has to be able to update itself (**)
Transformations à-la-CPS
Compiler optimizations [my idea: nondeterministic rewrite system, hill-climbing]

Compile-time garbage collection
Point (**) is much more delicate

Use syntax abstraction to rewrite into non-reflective programs
where possible...

...otherwise inefficient and unanalyzable (but not an “error”)

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Mainstream language aren’t sufficient
Reductionism
A closer look at ε

Reflection

The program has to be able to reason about itself (*)
Good error reporting: failed within the else branch of the
conditional starting at line 35
Analyses on the program state

unexec
Checkpointing
Compiling [the compiler is just a procedure!]

The program has to be able to update itself (**)
Transformations à-la-CPS
Compiler optimizations [my idea: nondeterministic rewrite system, hill-climbing]

Compile-time garbage collection
Point (**) is much more delicate

Use syntax abstraction to rewrite into non-reflective programs
where possible...

...otherwise inefficient and unanalyzable (but not an “error”)
Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Mainstream language aren’t sufficient
Reductionism
A closer look at ε

ε0 grammar

[This is the kernel language grammar!]

This is the complete kernel language grammar: .

.

e ::�
hack!| xh
hack!| ch
hack!| rlet x� be e in esh
hack!| rcall f e�sh
hack!| rprimitive π e�sh
hack!| rif e P tc�u then e else esh
hack!| rfork f e�sh
hack!| rjoin esh
hack!| rbundle e�sh

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Mainstream language aren’t sufficient
Reductionism
A closer look at ε

ε0 grammar [This is the kernel language grammar!]

This is the complete kernel language grammar: .

.

e ::�
hack!| xh
hack!| ch
hack!| rlet x� be e in esh
hack!| rcall f e�sh
hack!| rprimitive π e�sh
hack!| rif e P tc�u then e else esh
hack!| rfork f e�sh
hack!| rjoin esh
hack!| rbundle e�sh

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Mainstream language aren’t sufficient
Reductionism
A closer look at ε

Parsing

A predefined parser, for bootstrapping reasons
A predefined procedure parses s-expressions (like Scheme,
nothing similar to ε0)

Another predefined procedure expands s-expressions into
expressions

Macro expansion and transformations, here

Easy to add new literals (lexicon only)

If you don’t like s-expressions, write a new parser!
Use the predefined frontend to make another one

Minimality not so important here: easy to replace

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Mainstream language aren’t sufficient
Reductionism
A closer look at ε

ε0 has a formal semantics [just a sample here]

Γpglobal-environmentqrρs : x ÞÑ c
pxh, ρq.S !V Γ ÝÑE S !c!V Γ

Γpfuturesq : t ÞÑ pxy, !ct !Vtq
prjoin lsh0 , ρq.S !Fptq!V Γ ÝÑE S !ct !V Γ

St Vt Γ ÝÑE S 1

t V 1

t Γ1

Γpfuturesq : t ÞÑ pSt , VtqS V Γ ÝÑE S V Γ1rfutures, t ÞÑ pS 1

t , V 1

t qs

x R dompΓpglobal-environmentqrρsq
pxh, ρq.S !V Γ Óρ

A

The complete dyanamic semantics for ε0 is two or three pages long.

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Mainstream language aren’t sufficient
Reductionism
A closer look at ε

A word against mandatory static checks

You aren’t always writing software for nuclear power plants,
are you?
Programmers know best

maybe the code is safe but the compiler can’t prove it
maybe we want to test something unrelated to the problem

I’ll take responsibility if it fails, but let me run the damn thing

Refusing to compile or run is not rational
Silenceable warnings are fine
(Non-silenceable warnings will be overlooked and essentially
ignored)

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Mainstream language aren’t sufficient
Reductionism
A closer look at ε

“Epiphenomena”

Compilation, optimizations, analyses, ... are not part of the
language

But they can be implemented with predefined building blocks
A high-level pattern of lower-level objects

Interesting and useful, but not “fundamental”
Smaller language!

As an epiphenomenon, when extending ε0 we distinguish:
a meta library
a personality library

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Mainstream language aren’t sufficient
Reductionism
A closer look at ε

ε0 static semantics: “dimension inference” [a sample]

eh1 :# d1 ... ehn :# dn di � t1u, for all 1 ¤ i ¤ n
rbundle eh1 ...ehnsh0 :# tnu

eh1 :# d1 eh2 :# d2 d1 � tnu, d2 � >
rlet x1...xn be eh1 in eh2sh0 :# d2

π :# n Ñ m eh1 :# d1 ... ehn :# dn di � t1u, for all 1 ¤ i ¤ n
rprimitive π eh1 ...ehnsh0 :# tmu

eh1 :# d1 eh2 :# d2 eh3 :# d3 d1 � t1u, d � d2 \ d3, d � >
rif eh1 P tv1...vnu then eh2 else eh3sh0 :# d

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Mainstream language aren’t sufficient
Reductionism
A closer look at ε

My ε0 semantics is actually usable

The full dynamic sementics of ε0 fits in ∼ 2 pages (not
including primitive specification)
Dimension analysis proved sound with respect to dynamic
semantics [∼ 10 pages of not too hard Maths]

Well-dimensioned programs do not go wrong

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Mainstream language aren’t sufficient
Reductionism
A closer look at ε

Analyses and personalities

Some analyses must be performed on extended languages
(example: type analysis with first-class continuations)
Some analyses are better expressed on ε0...

Dimension analysis, asymptotic complexity analysis,
termination analysis...
We don’t need the extended forms, so analyzing ε0 is simple
(example: type inference on pattern matching)

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Mainstream language aren’t sufficient
Reductionism
A closer look at ε

ε current status

Advanced prototype in (a subset of) OCaml
To be bootstrapped with CamlP4

Parallel garbage collector in C (see my LIPN home page)
ε0 compiler written in (a subset of) OCaml; ANF, liveness
analysis
Frontend: I have an extensible scanner supporting any set of
base types, and an s-expression parser
Custom virtual machine written in low-level C (threaded code),
native backends easy to add
Bootstrapping code: lists, symbols, strings, hash tables..., in
ε0 ; not that uncomfortable
Other bootstrapping code from the previous implementation
based on λ-calculus

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

About ε

GNU epsilon is free software, to be released under the GNU GPL. .

.

You’re welcome to share and change it under certain conditions;
please see the license text for details.

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Conclusion

Reductionism is a viable style of designing and implementing
practical programming languages, leading to solutions which
are easier to extend, experiment with and formally analyze.
Strong syntactic abstraction makes easy what is impossible in
other languages

An overlooked problem: non-Lisp languages are severely
lacking

Thanks to reflection we can build language tools as part of the
program
Performance doesn’t need to be bad

I’ll have measures soon

Thanks!

Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

Introducing myself
The ε language

Conclusion

Conclusion

Reductionism is a viable style of designing and implementing
practical programming languages, leading to solutions which
are easier to extend, experiment with and formally analyze.
Strong syntactic abstraction makes easy what is impossible in
other languages

An overlooked problem: non-Lisp languages are severely
lacking

Thanks to reflection we can build language tools as part of the
program
Performance doesn’t need to be bad

I’ll have measures soon

Thanks!
Luca Saiu <positron@gnu.org> GNU epsilon – an extensible programming language

	Introducing myself
	The language
	Conclusion

